Using Squeaky Wheel Optimization to Derive Problem Specific Control
Information for a One Shot Scheduler for a Planetary Rover

Wayne Chi, Steve Chien, Jagriti Agrawal
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
{firstname.lastname } @jpl.nasa.gov

Abstract

We describe the application of using Monte Carlo simula-
tion to optimize a schedule for execution and rescheduling
robustness and activity score in the face of execution uncer-
tainties. We apply these techniques to the problem of op-
timizing a schedule for a planetary rover with very limited
onboard computation. We search in the schedule activity pri-
ority space - where the onboard scheduler is (a) a one shot
non-backtracking scheduler in which (b) the activity prior-
ity determines the order in which activities are considered
for placement in the schedule and (c) once an activity is
placed it is never moved or deleted. We show that simulation
driven search outperforms a number of alternative proposed
heuristic static priority assignment schemes. Our approach
can be viewed using simulation feedback to determine prob-
lem specific heuristics much like squeaky wheel optimiza-
tion.

Introduction

Embedded schedulers must often perform within very lim-
ited computational resources. We describe an approach to
automatically deriving problem specific control knowledge
for a one-shot (non-backtracking) scheduler intended for a
planetary rover with very limited computing. In this appli-
cation, the onboard scheduler is intended to make the rover
more robust to run-time variations (e.g., execution dura-
tions) by rescheduling. Because the general structure of the
schedule is known a priori on the ground before uplink, we
use both analysis of the schedule dependencies and simula-
tion feedback to derive problem specific control knowledge
to improve the onboard scheduler performance.

The target onboard scheduler is a one-shot limited search
scheduler. Because the scheduler does not backtrack across
activity placements, the order in which it considers activi-
ties heavily influences generated schedule quality. In our ap-
proach, we search the space of activity priorities which de-
termine the order in which the scheduler considers activity
placement. At each step in the priority search, a Monte Carlo
simulation is conducted to assess the likelihood of an activ-
ity being executed. Using an approach analogous to squeaky
wheel optimization, these runs are automatically analyzed

Copyright (©) 2018, California Institute of Technology. Govern-
ment sponsorship acknowledged.

and used to feed back into adjustments to the activity prior-
ities (and hence the order in which they are considered for
inclusion in the schedule for both initial schedule genera-
tion and rescheduling). This search in the activity priority
space continues until all requested activities are included or
a resource bound is exceeded. We call this method Priority
Search and we present empirical results that show that Pri-
ority Search outperforms several static priority assignment
methods (those that do not use Monte Carlo feedback) in-
cluding manual expert derived priority setting.

We study this problem in the context of setting activity
priorities as part of the ground operations process for a one-
shot, non-backtracking scheduler (Rabideau and Benowitz
2017) designed to run onboard NASA’s next planetary rover,
the Mars 2020 (M2020) rover (Jet Propulsion Laboratory
2017a). For our problem, the onboard scheduler is treated
as a predetermined “black box”.

The remainder of the paper is organized as follows. First
we describe our formulation of the scheduling problem, met-
rics for schedule goodness, and the onboard scheduling al-
gorithm. Second, we describe several static approaches to
priority assignment as well as our priority search approach
that leverages Monte Carlo simulation feedback. Third, we
describe empirical results demonstrating the efficacy of pri-
ority search over static methods, evaluating on sol types, the
best available anticipated operations plans for the M2020
planetary rover mission. Finally, we describe related and fu-
ture work and conclusions.

Problem Definition
For our defined scheduling problem (Rabideau and
Benowitz 2017), the scheduler is given
e alist of activities
Ailp,R,e,dv, T, T, D) ... A,(p,R,e,dv,T, T, D)
e where p is the scheduling priority of the activity, and

e R is the set of unit resources R, ... R,, that the activity
will use (up to project limitations - 128 for M2020), and

e ¢ and dv are the rate at which the consumable resources
energy and data volume respectively are consumed by the
activity, and

e I are non-depletable resources used such as sequence en-
gines available or peak power, and

e T is a set of the activity’s optional a) start time win-
dows T; start - - - Tiena and b) preferred schedule time
ﬂ,prcfe7‘reds and

e D is a set of the activity’s dependency constraints from
Aj — Ak !

All activities are Mandatory Activities. These are activi-
ties, my ... m; C A, that must be scheduled as long as the
given set of inputs are valid. In order for a set of inputs to
be considered valid, there must exist a valid (e.g. constraint
satisfying) schedule - in the context of the scheduler - that
includes all of the mandatory activities. Note that the M2020
Onboard Scheduler is an incomplete algorithm. As a result,
there could be a set of inputs where valid schedule exists
and a complete scheduler would place all mandatory activi-
ties, but the Onboard scheduler would not. Since not all in-
put sets will be valid, it is important for us to modify the
input sets (e.g. changing priorities) to allow all mandatory
activities to be scheduled.

In addition, activities can be grouped into Switch Groups.
A Switch Group is a set of activities where exactly one of the
activities in the set must be scheduled. The activities within
a switch group are called switch cases and vary only by how
many resources (time, energy, and data volume) they con-
sume. Switch groups allow us to schedule a more resource-
consuming activity if it will fit in the schedule. For example,
one of the M2020 instruments takes images to fill mosaics
which can vary in size; for instance we might consider 15,
3z5, or bab mosaics. Taking larger mosaics might be prefer-
able, but taking a larger mosaic takes more time, takes more
energy, and produces more data volume. These alternatives
would be modeled by a switch group that might be as fol-
lows:

Mosaicy,s Duration=100 sec
SwitchGroup = { Mosaics,s Duration=200sec (1)
Mosaics,s Duration=400 sec

In the above example, the scheduling priority order would
be Mosaicy.s the lowest of the three, then Mosaics,s, and
Mosaics,s the highest. The desire is for the scheduler to
schedule the activity M osaics, s but if it does not fit then try
scheduling M osaics, s, and eventually try Mosaicy 5 if the
other two fail to schedule. The challenge for the scheduler
is that getting a preferred switch case is not deemed worth
forcing out another mandatory activity from the schedule.
Because the normal approach to handling such interactions
is to search, this introduces complications into the schedul-
ing algorithms but these are the subject of a different paper.

The charter of the scheduler is to produce a grounded time
schedule that satisfies all of the above constraints.

We also make the following assumptions:

1. There exists a set of activity scheduling priorities that
would allow all mandatory activities to be scheduled by
the scheduler 2.

'A; — Ay means the scheduled end time of Ay must be before
the scheduled start time of A;.

2Since our algorithm includes an incomplete scheduler, our as-
sumption of a valid set of inputs can only hold true for our particu-
lar scheduler

2. The prior schedule is executed while the scheduler is run-

ning (Chi et al. 2018).

3. Activities do not fail.

4. No preemption (activities are only preempted as a major

failure case for M2020).

5. The onboard scheduler is a ”black box™ - the onboard

scheduler algorithm (Algorithm 1) is fixed.

The goal of the scheduler is to schedule all mandatory ac-
tivities and better switch cases * while respecting individual
and plan-wide constraints.

The goal of the priority setting algorithm is to derive a set
of priorities that will best allow the scheduler to achieve that
goal. Not only that, but we must derive that set of priorities
in the shortest amount of time possible in order to satisfy
daily mission time constraints.

Scheduler Design

Algorithm 1 Onboard Scheduler

Input:
A(p, R,e,dv,T", T, D): List of activities with their individual
constraints
C'": Constraints for the whole plan (e.g. available cumulative
resources)
S: Current state of the spacecraft (state of charge, data volume,
activity status)
Output:
U': Resulting schedule
1: Sort(A)
2: for eacha € Ado
3: P+ > Some activities may require automatically
generated preheats
4: M+ 0 > Some activities may require automatically
generated maintenances
[a.earliest_start_time, a.latest_start_time]
N find_valid_intervals(a.unit_resources)

> Sorted by highest to lowest priority.

> I N find-valid_intervals(a.activity_status)
N find_valid_intervals(a.datavolume)

6: if requires_preheat(a) then

7. P + generate_preheat_activities(a)
8: M <+ generate_maintenance_activities(a)
9: end if

10: I I N find_valid_intervals(a.energy, P, M)

’ N find-valid_intervals(a.peak _power, P, M)

11: awake < generate_awake_activity(a, I)

12: if I # () then

13: schedule_activity(a, I)

14: schedule_activity(awake, I)

15: for each p € P do

16: schedule_activity(p, I)

17: end for

18: for each m € M do

19: schedule_activity(m, I)

20: end for

21: end if

22: end for

The Mars 2020 onboard scheduler (Algorithm 1) is a sin-
gle shot, non-backtracking scheduler that schedules (consid-

*See Evaluating a Schedule for more information

ers activities) priority first order and never removes or moves
an activity after it is placed during a single scheduler run. It
does not search except when considering valid intervals for
a single activity placement and when scheduling sleep and
preheats (Rabideau and Benowitz 2017).

Due to the greedy, non-backtracking nature of the onboard
scheduler, the order in which activities are scheduled can
greatly impact the quality of the schedule.

Evaluating a Schedule

In order to evaluate the goodness of a particular priority as-
signment, we have developed a scoring method based on
how many and what type of mandatory and switch group
activities are able to be scheduled successfully by the sched-
uler. The score is such that the value of any single manda-
tory activity being scheduled is much greater than that of any
combination of switch cases (at most one activity from each
switch group can be scheduled). This ensures the following
strict ordering:
ns
VimeM)> > V(seS) 2)
i=1
where V'(z) is the value of activity z being scheduled, M
is the set of all mandatory activities, ng is the number of
switch groups, .S; is switch group 4, and s is a switch case in
switch group 5;.

Static Algorithms for Activity Priority
Assignment

We have developed several static algorithms which set the
priorities of activities based on various activity ordering cri-
teria. These algorithms do not consider Monte Carlo simu-
lations of plan execution where activities may end early or
late while determining priorities, unlike our Priority Search
approach. We will later compare these to our Priority Search
approach to gain a better understanding of how well it per-
forms. Activities which must begin at a particular time (e.g.
data downlink) are always given the highest priority and thus
are not affected by the static algorithms described.

The following four methods are used to initialize activity
priorities:
e Fqual Priorities. All activities have equal priorities.

e Random Assignment. Each activity is given a random pri-
ority.

o Latest Start Time. The activity priorities are ordered by
the latest time they are allowed to start. The activity with
the earliest such time has the highest priority.

o Human Expert. Each activity is assigned a priority based
on the start time of the activity in a schedule constructed
by a human expert. The activity with the earliest start time
in this schedule has the highest priority.

The following two methods are applied to the priorities
after they have been initialized in one of the four ways de-
scribed above:

4Sleep and preheats are activities automatically generated and
scheduled by the scheduler.

e Dependencies. A — B means that B must execute suc-
cessfully before A can start. To generate a schedule that
respects this,

A — B = prioritys < priorityp 3)

where higher priority means an activity is considered for
scheduling earlier.

o Tie Breaker. If activities have the same priority assign-
ment the activity with earliest latest allowed start time is
of higher priority. If they also have the same latest allowed
start time then the longer activity has the higher priority. If
all of these attributes are equal then the higher priority ac-
tivity is chosen lexicographically based on each activity’s
unique identifier.

Priority Search

In order to determine a set of priorities which will allow the
scheduler to generate a schedule better than our static heuris-
tics, we attempt to search the priority space in an approach
similar to Squeaky Wheel Optimization (SWO) as described
in Joslin and Clements 1999 (Joslin and Clements 1999).
Squeaky Wheel Optimization usually involves a construc-
tor, an analyzer, and a prioritizer. The constructor generates
a schedule, the analyzer determines problem areas and as-
signs “blame” to certain elements in the schedule, and the
prioritizer modifies the order in which the elements are con-
sidered. This process repeats until a satisfactory result is
reached or allotted time runs out. However, our scheduling
problem is intrinsically tied to execution and analyzing the
initial schedule generated by itself is not satisfactory. Our
approach (Figure 1) builds upon the usual SWO approach
by incorporating a simulation of execution and Monte Carlo
to build an execution sensitive result. We call our approach
Priority Search as it searches the priority space using Monte
Carlo simulation feedback to find a good set of priorities,
unlike the static algorithms.

Analyzer
Solution Blame
Constructor | Prioritizer
OBP/Surrogate |
MontesCarlo

Activity Priorities

Figure 1: Squeaky Wheel accounting for Execution

Constructor

Typically, the constructor generates a schedule as the so-
lution, which is then fed into the analyzer. However, our
scheduling problem must be taken in context with execu-
tion. Activities may finish early or late which affect how
many and which activities can be scheduled. In order to
take this into account, we generate the final schedule of a

(lightweight) simulation of the entire plan execution. This
is simulated by letting activities finish early or late by a
variable amount based on a probabilistic model of plan ex-
ecution °. However, the probabilistic model may promote
misleading results if only sampled once. As a result, our
constructor (Algorithm 2) runs a Monte Carlo and simu-
lates multiple plan executions, passing on all of the executed
plans as the solution to the analyzer.

Algorithm 2 Monte Carlo Constructor

Input:
A(p, R,e,dv,T", T, D): List of activities with their individual
constraints
C': Constraints for the whole plan (e.g. available cumulative
resources)
N: Number of runs in the Monte Carlo
Output:
S: List of all final schedules after simulating execution
140
while 7 < N do
schedule + simulation(4, C)°
Si <+ schedule
1 i+1
end while

AR

Priority Analyzer

The analyzer (Algorithm 3) takes the solution and assigns
blame to problem areas. Since our objective is to schedule
all mandatory activities and better switch cases, we blame
all activities that are not scheduled. Since the solution is
multiple schedules, there may be some Monte Carlo runs
where the activities do not succeed or fail to be scheduled.
For simplicity, we chose to blame any activity that was un-
scheduled in any of the schedules, but other approaches may
assign blame according to how many times an activity was
not scheduled.

Algorithm 3 Monte Carlo Analyzer

Input:
A(p): List of activities with priorities
S: List of all final schedules after simulating execution
Output:
U': List of all unscheduled activities
score: Score (objective function)
: for each S; € S do
U<+ UU{VaceAla¢ S}
score < score + get_score(S;)
end for

RN

Constant Step Prioritizer

A simple way to re-prioritize is to increase the blamed (un-

scheduled) activities’ priorities by a constant step size s.
Typically, activities have varying degrees of flexibility

due to their constraints (resources, dependencies, time, etc.).

>See Empirical Results for how that probabilistic model was
generated.
SThe final schedule after simulating execution.

Algorithm 4 Constant Step Reprioritization

Input:
A(p): List of activities with priorities
U: List of all unscheduled activities (from analyzer)
step: Constant step size
Output:
A: Best relative ordering of activities found
1: for eacha € U do
2: incrementRelativePriority(a, step, A)
3 for each d € a.dependents do
4: incrementRelativePriority(d, step, A)
5: end for
6: for each sg € a.switchGroup do
7 incrementRelativePriority(sg, step, A)
8 end for
9: end for

Higher priority activities can consume resources (unit re-
sources, energy, and data volume) or change state in a way
that prevents lower priority activities from scheduling such
that their constraints are satisfied. Increasing the blamed ac-
tivities’ priorities allows them to schedule earlier (schedul-
ing order) which means they have more slack™ to satisfy
their constraints. The goal is that the algorithm will slowly
promote less flexible activities to the top so that their con-
straints can be satisfied, and demoted activities are flexible
enough to be scheduled in a more constrained plan.

When increasing the relative priorities of blamed activi-
ties, the existing relative priorities between certain groups
of activities must remain enforced.

First, each switch group must maintain the relative prior-
ities between each activity in the grouping. For each switch
group, the activities (sy, ..., s,) must be ordered such that
those with higher resource consumption (time, energy, and
data volume) have higher priorities as well.

Second, dependency relationships must be enforced such
that (3) is held true.

Higher Priority

Lower Priority
W [o[]=]>]

| REEER
- LEEEE

Figure 2: Cycle in the Constant Step approach. Red activities
were unable to be scheduled and assigned blamed.

There is one main issue with the Constant Step approach

- it is extremely susceptible to cycles. One common cause
for cycles is that a set of activities needs to be promoted be-
yond a particular activity together, but the constant step size
prevents this from ever occurring. For example, in Figure 2
activity F is unschedulable and assigned blame. Its priority
is increased, but this causes activity E to fail to schedule.
Activity E is then promoted in the next iteration, causing F
to fail to schedule and the process repeats. In reality, both
E and F have to be promoted above D, but because the step
size is constant, they will never achieve that and form a cy-
cle. The situation where activities are unable to be promoted
above an activity blocking it can be extended to any constant

step size less than the maximum step size ’.

Stochastic Step Reprioritization

Algorithm 5 Stochastic Step Reprioritization

Input:
A(p): List of activities with priorities
U': List of all unscheduled activities (from analyzer)
Output:
A: Best relative ordering of activities found
1: step < random(1, A.length)
2: for eacha € U do
3: incrementRelativePriority(a, step, A)
4: for each d € a.dependents do
5 incrementRelativePriority(d, step, A)
6: end for
7: for each sg € a.switchGroup do
8: incrementRelativePriority(sg, step, A)
9 end for
0:

1 : end for

Injecting randomness to the step size allows the algorithm
to become robust to cycles. In each iteration of the priority
setting algorithm, a random step distance between 1 and IV,
where N is the number of activities in the plan, is assigned
to all of the blamed activities. This lets the scheduler always
have the possibility of being promoted above a resource con-
straining activity, while still allowing smaller step size pri-
ority permutations.

The main issue that lies with a random approach is that
empirically ® it finds the global maximum score slower than
desired. This is further exacerbated by the fact that each it-
eration of our SWO cycle takes a non-negligible amount of
time (a few seconds) due to the need to run a lightweight
simulation and Monte Carlo.

Max Step Reprioritization

Stochastic Step Reprioritization (empirically) produced re-
sults slower than desired. Max Step Reprioritization seeks to
solve both of those issues by always promoting blamed ac-
tivities to have the highest scheduling priorities. The earlier
an activity is considered for scheduling, the more flexibil-
ity that activity has to be scheduled. Therefore, if an activity

"See section Max Step Reprioritization
$More information can be found in Empirical Evaluation.

Algorithm 6 Max Step Reprioritization

Input:
A(p): List of activities with priorities
U': List of all unscheduled activities (from analyzer)
Output:
A: Best relative ordering of activities found
1: foreacha € U do
2: step + A.length
3 incrementRelativePriority(a, step, A)
4 for each d € a.dependents do
5: incrementRelativePriority(d, step, A)
6: end for
7: for each sg € a.switchGroup do
8 incrementRelativePriority(sg, step, A)
9: end for
10: end for

is first to be considered for scheduling, but still cannot be
successfully scheduled, there is no other scheduling priority
that would allow the activity to be scheduled. Knowing this,
by promoting blamed activities to have the highest schedul-
ing priorities we can attempt to avoid iterations that fail to
schedule the same blamed activities, thereby speeding up the
overall algorithm.

Since the blamed activities will have the highest schedul-
ing priorities, cycles such as those seen in Figure 2 can be
avoided. However, Max Step Reprioritization doesn’t pre-
vent cycles entirely and they still pose an issue when en-
countered.

Empirical Evaluation

In order to evaluate how well our Priority Search algorithm
is able to generate a priority assignment which results in
an optimal schedule, we have applied the algorithm to var-
ious sets of inputs comprised of activities with their con-
straints and priorities and compared against various static
algorithms. The inputs are derived from sol types. Sol types
are currently the best available data on expected Mars 2020
rover operations (Jet Propulsion Laboratory 2017a). In order
to construct a schedule and simulate plan execution, we use
the M2020 surrogate scheduler - an implementation of the
same algorithm as the M2020 onboard scheduler (Rabideau
and Benowitz 2017), but implemented for a Linux work-
station environment. As such, it is expected to produce the
same schedules as the operational scheduler but runs much
faster in a workstation environment. The surrogate scheduler
is expected to assist in validating the flight scheduler imple-
mentation and also in ground operations for the mission (Chi
et al. 2018).

Each input file contains approximately 40 activities. We
use a probabilistic execution model based on operations data
from the Mars Science Laboratory Mission (Jet Propulsion
Laboratory 2017b; Gaines et al. 2016a; 2016b) in order to
simulate activities completing early by a reasonable amount.
In our model to determine activity execution durations, each
of the actual execution durations provided in MSL data is
first divided by the corresponding predicted execution dura-

tion. Then, we use a linear regression on the scaled values to
obtain a mean and standard deviation presuming the ratio of
predicted to actual execution times is normally distributed.
The value representing the actual execution duration on the
regression line for the given conservative duration is used as
the mean. A scaled prediction of the actual duration is gen-
erated from a a normal distribution using the derived mean
and standard deviation. Finally, this value is scaled back by
multiplying by the given conservative duration. Note that we
do not explicitly change other activity resources such as en-
ergy and data volume since they are generally modeled as
rates and changing activity durations implicitly changes en-
ergy and data volume as well.

Using each of the sol types, we create variants by adding
two switch groups to a set of inputs. Each switch group con-
tains three switch cases where the switch cases differ in du-
ration in a manner similar to the one described in (1). Each
of the two switch groups are as follows:

Activityoriginar Duration=x sec
Duration=2x sec
Duration=4x sec

“)

Due to the inequality in (2), a successfully scheduled
mandatory activity is of much higher value than a success-
fully scheduled longer switch case. Therefore, the manda-
tory activity score is weighted at a much larger value then
the switch group score. Each mandatory activity that is suc-
cessfully scheduled is given one point which contributes to
the mandatory score. If a switch case with a duration that is
2 times that of the original activity is able to be scheduled,
then it contributes 1/5 to the switch group score. If a switch
case that is 4 times the original duration is able to be sched-
uled, then it contributes 2/5 to the switch group. Since there
are two switch groups in each variant, the maximum switch
group score for a variant is 2 x (2/5) = 4/5. In the follow-
ing empirical results, we average the mandatory and switch
groups scores over all Monte Carlo runs of execution.

Also, in each of our variants we set the preferred sched-
ule time of each activity to the earliest time the activity is
allowed to start.

We first compare the different approaches to implement-
ing Priority Search to understand which performs better.

The highest score so far is a combination of the manda-
tory score and the switch group score where the mandatory
score is weighted at a much higher value than the switch
group score. In Figure 3 we plot how the mandatory and
switch case components of the highest score achieved up to
the current time change over time using both the Stochas-
tic method and the Max Step method. We do not consider
the Constant Step method since it is so highly susceptible to
cycles. For both methods, as the score for mandatory activi-
ties increases, the score for switch groups largely decreases
until the highest mandatory score is reached. This is a rea-
sonable outcome because as more mandatory activities are
scheduled, the schedule likely becomes more constricted,
thus making it more difficult to schedule longer switch cases.
Since the mandatory score contributes much more to the to-
tal score than the switch group score and the mandatory sore

SwitchGroup = { Activitys,
Activityy,

Average Highest Mandatory Score So Far vs Time with Stochastic and Max Step
for 9 Plans, 15 Variations Each, 50 Monte Carlo

38.0 -

37.9 4

37.8 A

37.7 1

37.6 A

37.5 4

Highest Mandatory Score So Far

37.4 A
Max Step

—— Stochastic

37.34 T T T T T
0 200 400 600 800
Time (sec)

(a) Mandatory score component of highest score so far vs Time av-
eraged across sol type variants using both priority search methods.

Average Switch Group Score So Far vs Time with Stochastic and Max Step
for 9 Plans, 15 Variations Each, 50 Monte Carlo

0.70 Max Step
—— Stochastic

o o
o «
o v

Switch Group Score

14
s
vl

Time (sec)

(b) Switch group score component of highest score so far vs Time
averaged across sol type variants using both priority search meth-
ods.

Figure 3: Plot of the highest score so far separated by manda-
tory score (3a) and switch group score (3b) over time using
the Stochastic Step method and the Max Step method aver-
aged over 9 sol types, each with 10 variants each containing
2 switch groups. Each iteration of Priority Search was run
with 10 Monte Carlo runs and with 30 iterations of Priority
Search alloted for each run of the algorithm.

is increasing in both figures, the total highest score so far is
always increasing over time, as it should be.

Figure 3a shows that Stochastic Step reaches its highest
mandatory score that is ever achieved over the time span
of approximately 920 seconds (30 iterations of the priority
search algorithm) in 207.58 seconds. The highest mandatory
score achieved at this time and onwards is 38.047. The high-

est mandatory score using the Max Step method is reached at
120.59 seconds and has a value of 38.044. Figure 3b shows
that the highest switch group score after the point at which
the highest mandatory score is reached is 1.67 at 568.16 sec-
onds using the Stochastic method and 1.48 at 150.87 seconds
using the Max Step method. Therefore, we conclude that us-
ing the stochastic method results in a marginally higher total
highest score but it takes less time to reach the highest score
using the Max Step method.

- static

of 38.11

rence from a Perfect Average Mandatory Score

Differ

(a) Difference from perfect mandatory score averaged across
sol type variants for various scheduling methods.

a Perfect Switch Group Score (0.8)
Cases, 15 Variants per Sol Type,
0, 50 Monte Carlo)

- static

of0.8

a Perfect Switch Group Score

& & & &
o © s W0 e
e R B e & Ve P
e e AR W et
QT s St et
o

N
o
ks e

e ca
Wi <e® N
O OIS
o

o
P

(b) Difference from perfect switch group score averaged
across sol type variants for various scheduling methods.

Figure 4: The difference from a perfect mandatory score of
38.11 and perfect switch group score of 1.0 using various
scheduling methods is averaged over 9 sol types where 15
variants are derived from each sol type and each variant con-
tains 2 switch cases. Each iteration of the Priority Search
algorithm is run with 50 Monte Carlo runs of execution

Figure 4 shows the results of comparisons between Prior-
ity Search and other static priority setting algorithms. Since
the scheduling of mandatory activities and switch groups
are not weighted equally, we have constructed two separate
plots to show the results for each. Both methods of Priority
Search, in red, result in fewer unscheduled mandatory activ-
ities and consequently a lower difference from the perfect
mandatory score. This implies they set the priorities such
that more mandatory activities are able to be scheduled over
multiple Monte Carlo runs compared to how the static al-
gorithms set the activity priorities. As shown in 4b, they re-
sult in a higher number of unscheduled switch cases, likely
because if more mandatory activities were scheduled it be-
comes more difficult to schedule longer switch cases. Due
to the strict inequality described in (2), even though fewer
longer switch cases are scheduled, the total scheduling score
is still higher when using Priority Search. Thus, we conclude
that both Priority Search methods outperform the static algo-
rithms. Among the static algorithms, running the Dependen-
cies algorithm with Tie Breaker on equal priorities performs
the best as it results in the highest mandatory score while
running Tie Breaker after setting the priorities based on the
latest start time performs the worst.

Related Work

Our Priority Search approach is inspired by Squeaky Wheel
Optimization (SWO). Typically, SWO uses a constructor
and analyzer, and prioritizer for the next iteration of sched-
ule generation (Joslin and Clements 1999). Priority Search
differs in that the intent is not to generate a good schedule
but rather to set priorities that perform well in execution and
rescheduling. Therefore the Priority Search constructor must
use the scheduler through multiple runs of execution (where
each run of execution incurs multiple scheduler invocations)
to assess priority assignment performance.

Generating schedules that are robust to execution run time
variations (Leon, Wu, and Storer 1994) is a mature area of
work. However, the topic usually revolves around develop-
ing a scheduler that can generate robust schedules. In our
case, the scheduler is a) a fixed “’black box” that we have no
control over and b) robust to execution run time variations
mainly through rescheduling (Chi et al. 2018). As a result,
rather than developing a scheduler itself, we’re developing
a methodology that is able to generate a set of priorities for
a fixed scheduler that enables it to be robust to rescheduling
due to runtime variations.

Other approaches (Drummond, Bresina, and Swanson
1994; Washington, Golden, and Bresina 2000) use branch-
ing to increase robustness - these differ from our work that
adjusts priorities and allows rescheduling.

A number of other spacecraft (Muscettola et al. 1998;
Pell et al. 1997; Chien et al. 2005; 2016) and rover (Woods
et al. 2009; Gregory et al. 2002) autonomy systems have in-
cluded planning, but these differ in that we are deriving con-
trol information specific to scheduling for a limited context
- e.g. one rover sol. temporal schedule.

Discussion and Future Work

While we have focused on the impact of activity priority
on the scheduler (and hence rescheduling during execution),
there is often an execution system that may also have some
flexibility to add robustness to the overall system (Chi et al.
2018). For the empirical evaluation described above, we ran
without such an execution system. In the future, we could
consider the execution system in the schedule and Monte
Carlo analysis and potentially derive information usable by
the execution system (e.g. allow an activity to run late but
only until time T). This paper describes initial work to de-
termine priorities for scheduler activity consideration order-
ing to optimize scheduler execution results for an embedded
scheduler. However, this work is still preliminary with many
other ideas to be explored as described below.

First, more sophisticated critique/blame assignment meth-
ods should be explored. Currently, priorities of activities
that are not executed are modified, but more sophisticated
analysis of scheduler runs could provide greater insight into
how the priorities should be modified. Prior work in Process
Chronologies (Biefeld and Cooper 1991) has been used to
focus scheduling tactics by finding regions where time con-
straints or high demand for some resource results in conflict.
By evaluating which periods of time or what resources are
over-subscribed using Capacity/Over-Subscription Analy-
sis, we can pinpoint which activities are more tightly con-
strained and increase their priorities. Prior work in Over-
subscribed Scheduling Problems (Kramer and Smith 2006)
show that scheduling according to maximum-availability
(least subscribed) allows a suitable schedule to be generated.
Similar analysis could be used to determine which activities
to assign blame to and by how much to promote the blamed
activities. We can also consider precedence constraints when
deciding by how much to promote activity priorities. For ev-
ery blamed activity, there is likely a scheduled activity that
is using resources needed by the blamed activity. Precedence
constraints could help discern which activity is using those
resources. The blamed activity could then be promoted only
as much as is necessary in order to be scheduled before the
offending activity.

We can also implement several methods to help us explore
different search spaces. Priority Search only adjusts priori-
ties to improve execution and rescheduling performance. We
could also add new activity precedence constraints (e.g. A
must end before B starts) or enforce partitions in the sched-
ule (e.g. all of these activities must be scheduled to end prior
to 11 am). These types of constraints could drive the sched-
uler towards subsets of the schedule search space. Random-
ized restart can allow our priority search algorithm to better
explore the global space rather than searching locally. An-
other alternative would be to keep a list of promising sched-
ule priority assignments and backtrack to those randomly,
allowing us to better explore the search space.

We can also make improvements to our Monte Carlo
method and use the resulting simulations for further analysis
of the scheduler. In order to build a model of run time vari-
ations that is not overly skewed, we use Monte Carlo to re-
peatedly sample a variety of execution run time results. Stan-
dard Monte Carlo simulations tend to focus most runs on

the nominal cases, but a more effective methodology sam-
ples edge cases but weighs the cases by their likelihood to
increase coverage of the variability in the space (in this case
variable activity execution times). The Monte Carlo of exe-
cution run time variations can provide valuable information
for why activities fail to schedule, what input plans are best
suited for the current scheduler design, and how the current
input could end up executing. We are working on visualiz-
ing this information to better inform those working with the
scheduler.

Currently, we only test with mandatory activities. In the
future, we will extend our approach to include optional ac-
tivities, which will add further complexity to the algorithm
and analysis. Optional activities are lower priority activities
what are nice to have scheduled, but not necessary. They
are generally only able to be scheduled if mandatory activi-
ties end early or consume less resources than expected. We
also plan to use an activity’s actual scheduled preferred time
while testing.

Cycles pose an issue to both Constant Step Reprioritiza-
tion and Max Step Reprioritization. Better cycle detection
would allow us to not only overcome the issues presented,
but also provide additional information on how to permute
the priority set for the next iteration. For example, cycle de-
tection could allow us to not only detect the cycle in Figure
2, but know that both E and F should be incremented to-
gether.

While we have established a few methods to improve the
prioritizer and decide on the next permutation of activity
priorities, we have utilized the same objective function to
determine the success of our algorithm. However, our ob-
jective function is simple and coarse; oftentimes, the same
score will appear repeatedly in multiple consecutive. As a
result, the algorithm often travels swaths of plateaus be-
fore sharply improving. This choppiness is suboptimal for
Squeaky Wheel Optimization and gradient descent problems
in general. Some potential additions to the objective function
could be how much energy is leftover in the plan or how
close an activity is to their preferred scheduling time. Eval-
uating a more precise objective function can reduce choppi-
ness and better steer the algorithm towards a more optimal
solution.

Conclusion

We have presented a study of methods to assign activity pri-
orities to control a limited, embedded scheduler to optimize
rescheduling for a specific problem. We first define a set of
static methods that assign activity priorities based on heuris-
tics and schedule dependencies. We then describe how these
priorities can be further adjusted based on feedback from
simulated execution and rescheduling using Monte Carlo
methods to perform Priority Search. We present an empirical
evaluation of several static and priority search methods using
best available planetary rover operations data. This empiri-
cal evaluation shows that Priority Search outperforms static
methods including human expert derived priorities. Finally
we describe a number of promising areas for future improve-
ments to our algorithms.

Acknowledgments

This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

References

Biefeld, E., and Cooper, L. 1991. Bottleneck identification
using process chronologies. In IJCAI, 218-224.

Chi, W.; Chien, S.; Agrawal, J.; Rabideau, G.; Benowitz, E.;
Gaines, D.; Fosse, E.; Kuhn, S.; and Biehl, J. 2018. Em-
bedding a scheduler in execution for a planetary rover. In
ICAPS.

Chien, S. A.; Sherwood, R.; Tran, D.; Cichy, B.; Rabideau,
G.; Castano, R.; Davies, A.; Mandl, D.; Trout, B.; Shulman,
S.; et al. 2005. Using autonomy flight software to improve
science return on earth observing one. Journal of Aerospace
Computing Information and Communication 2(4):196-216.

Chien, S.; Doubleday, J.; Thompson, D. R.; Wagstaff, K. L.;
Bellardo, J.; Francis, C.; Baumgarten, E.; Williams, A.; Yee,
E.; Stanton, E.; et al. 2016. Onboard autonomy on the in-
telligent payload experiment cubesat mission. Journal of
Aerospace Information Systems.

Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
in-case scheduling. In AAAI, volume 94, 1098-1104.

Gaines, D.; Anderson, R.; Doran, G.; Huffman, W.; Justice,
H.; Mackey, R.; Rabideau, G.; Vasavada, A.; Verma, V.; Es-
tlin, T.; et al. 2016a. Productivity challenges for mars rover
operations. In Proceedings of 4th Workshop on Planning
and Robotics (PlanRob), 115-125. London, UK.

Gaines, D.; Doran, G.; Justice, H.; Rabideau, G.; Schaffer,
S.; Verma, V.; Wagstaff, K.; Vasavada, A.; Huffman, W.; An-
derson, R.; et al. 2016b. Productivity challenges for mars
rover operations: A case study of mars science laboratory
operations. Technical report, Technical Report D-97908, Jet
Propulsion Laboratory.

Gregory, N. M.; Dorais, G. A.; Fry, C.; Levinson, R.; and
Plaunt, C. 2002. Idea: Planning at the core of autonomous
reactive agents. In Proceedings of the 3rd International
Workshop on Planning and Scheduling for Space. Citeseer.

Jet Propulsion Laboratory. 2017a. Mars 2020 rover mission
https://mars.nasa.gov/mars2020/ retrieved 2017-11-13.

Jet Propulsion Laboratory. 2017b. Mars science laboratory
mission https://mars.nasa.gov/msl/ 2017-11-13.

Joslin, D. E., and Clements, D. P. 1999. Squeaky wheel

optimization. Journal of Artificial Intelligence Research
10:353-373.

Kramer, L. A., and Smith, S. F. 2006. Resource contention
metrics for oversubscribed scheduling problems. In ICAPS,
406-4009.

Leon, V. J.; Wu, S. D.; and Storer, R. H. 1994. Robustness
measures and robust scheduling for job shops. IIE transac-
tions 26(5):32-43.

Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.

1998. Remote agent: To boldly go where no ai system has
gone before. Artificial Intelligence 103(1-2):5-47.

Pell, B.; Gat, E.; Keesing, R.; Muscettola, N.; and Smith,
B. 1997. Robust periodic planning and execution for au-
tonomous spacecraft. In International Joint Conference on

Artificial Intelligence, 1234—1239.

Rabideau, G., and Benowitz, E. 2017. Prototyping an on-
board scheduler for the mars 2020 rover. In International
Workshop on Planning and Scheduling for Space.
Washington, R.; Golden, K.; and Bresina, J. 2000. Plan
execution, monitoring, and adaptation for planetary rovers.
Electron. Trans. Artif. Intell.

Woods, M.; Shaw, A.; Barnes, D.; Price, D.; Long, D.; and
Pullan, D. 2009. Autonomous science for an exomars rover—
like mission. Journal of Field Robotics 26(4):358-390.

